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TRANSFORMING CURVES INTO CURVES WITH THE SAME SHAPE

Abstract

Curves are considered to have the same shape when they are
rela£ed by a similarity transformation of a certain kiﬁd. This
paper extends earlier work on parallel curves to curves with the
same shape. Some examples are given more or less explicitly. A
generalization is used to show that the theory is ordinal and to
‘show how the theory may be applied to measure sensation. The
problem of actually transforming curves into curves with the same
_shape is reduced to the'problem of rendering anothexr set of curves
parallel. Connections With groups and rings are developed to place
the work in a familiar context. These connections and the earlier
work on parallel curves are used to obtain necessary and sufficient
conditions for the existence of transformatiodns, to study the

uniqueness of transformations and to show how transformations can

be calculated.
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TRANSFORMING CURVES INTO CURVES WITH THE SAME SHAPEl’2

Michael V. Levine
University of Pennsylvania

INTRODUCTION

Two curves aré commonly called paréllel when it is possible
to shift one along the x~axis until it coincides with the other.

In othgr words a pair of curves (or subsets of the plane) are
parallel when there is a constant k such that the translation

<x, y>—-><x+ k, y > carries one onto the other. For an example,
1et one curve be the graph of the distributién of a normal random
variable and the other be that of a normal random variable with the
same variance as the first but a different mean.

Curves will be called similar when a increasing similarity trans-
formation along the x-axis carries one onto the other. In other words
they have the same shapé in the sense that for some constants a > 0
and k the mapping <X,y >— <Iag + k, y > carries one onto the
other. - For an example, consider the distributions of two normal random
variables with different means and variances. More examples are in-
dicated belbw.

A real vélued'function_ u renders a set of curves parallel when
the transformation < x, y >—> <u(x) , vy > simultaneously carries

all the curves into new curves such that each pair of new curves is

parallel; The phase "1 renders a set of curves similar" is analo-

gously defined.

There is (Lévine; 1970) a general theory for curves that can be

,renaéred‘paraliél. This papervextends that theory to curves that can

'bé"rendéred_similar.u




For definiteness the reader may wish to consider transforming

curves obtained as the graphs of special (increasing, one-to-one,
onto) real functions. However, there are two important reasons for
temporarily setting aside tﬁis interpretation in favor of a more
abstract interpretation of the paper's subject.

In the first place in most of the applications presently fore-
seen the psychologist will not be considering mappings from the space
of real numbers onto the space of real numbers. Instead he will be
considering mappings between spaces assuﬁed to be topologically
equivalent to the real number. For examples, there are mappings
between the objective and subjective probabilities of uncertain
events,between valued objects and utilities and between dial settings
on a rheostat controlling the physical intensity of a stimulus and a
continuum of sensations. Secondly it is extremely important to recog-
nize that even when spaces of numbers are considered in this theory,
the algebraic,arithmetic,and metric properties of the numbers are
irrelevant. Only the ordinal (i;e., topological) attributes of the
numbers have conseguences within this theory.

For these reasons we briefly consider the following problem about
two abstract‘topdlogical spaces A and B and a family of homeo-

morphisms (i.e., continuous functions with continuous inverses).

Problem One: Let F be a given set of homeomorphisms mapping a topo-

logical space A onto a space B, Find all the pairs of homeomorphiéms

(u,v) such that
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le u maps A onto the reals and v maps

the reals onto B and

2. for each F in z) there are real

constants a,b such that
i. a 1is positive

ii. F(x) = v(au(x) + b) for all x in A.

For example, suppose F, is a set of strictly monotonic functions
mapping the reals onto the realé. Then a transformation u renders
the graphs of the function in F similar if and only if for some

vy (u,v) 1is a solutionlto Problem One.

In the earlier paper five examples were given to demonstrate
that this sort of problem occurs so fréquentiy in psychology that it
is desirable to have a general theory to deal with it. That paper
dealt with the specidl case obtained by setting A = B = real numbers,
vu(x) = x for all x and a = 1 in condition 2. However, the general
situation is obvious in many of the examples.

As an additioﬁal example-suppose one is studying a family of

~distribution functions such as, for concreteness, {Fh} where F, (x)
is the proportion of children having weight less than x pounds that
one expects to observe in the'populatioh of children of age A. As an
alternative to‘regarding the normal.family of distributions as a con~-
venient set of distributions éoﬁtéining good approximations to the

‘distributions F oquﬁay'use this theory to study all the (bicontinuous)

A

transformations_ ﬁ of'weightvsuch that the distributions of the trans-

formed measures are exactly normal.

}
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To do this one considers Problem One with A = positive numbers,
B = numbers between zero and one and F = {Fh}' Then this theory will
deliver all the functions u such that distributions of the transformed
weights, u(weight), will be normal. It will tell when such trans-
formations can be defined. It will show that the transformed weights
are generally unigue up to a linear transformation. And even when the
distributions cannot be made normal it will sometimes deliver trans-
formations wu such that distributions of the transformed random vari-
ables have the same (not normal) shape. In this event the transformation
u will generally be essentially unique. Furthermore, from the numbers
a,b in parf 2 one can obtain measures of dispersion and central tendency

which are precisely analoguous to the standard deviation and mean of the

normal faﬁily.

SUMMARY AND RELATION TO MATHEMATICAL LITERATURE

For definitions of technical terms used in the summary part of

this section, please see section TIII.

Section I contains a reformulation of ?roblem One and the problem
of findingtthé_transformations rendering curves similar as a mcre standard
mathematical probiem.‘ Secﬁion II contéins some definitions and some
.published m&théméﬁiqal fac£s neeaed foi solving the reformulated problem.

Section III and V contain solutions to the problem. Section IV contains

an informal discussion of concepts used  in section III.
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To be more detailed, the set of functions E in Problem One

is replaced by a jroup of real homeomorphisms G. In section I it

is shown that this results in no loss of generality. Composition of

functions is the group operation. Problem One is then rephrased as
an equivalent question about the group G. The question is: find all

the increasing homeomorphisms u such that uGu = is a subgroup of

the group of affine homesomorphisms {x—> ax + b: a is positive and b

is reall.
This question has three different answers according to the nature

of the group G.
u with the desired

1. 1If g is not abelian, then functions

properties exist if and only if the derived group G of S is con-
jugate to a group of translations. In this case qu— is affine if

and only if qgfu_* is a group of translations.

2. If e} is abelian but not conjugate to a group of translations,

then either there are no solutions u or a pair of groups QT' G can

be constructed such that all wu's can be obtained from pairs v,w,

+ - - -
where both vG v 1 and WG w are groups of translations.

3. If G is abelian and conjugate to a group of tramslations,

TS

then all functions u with the desired properties can be obtained by

applyingvthé results in_an earlier papef (Levine, 1970). fThat paper

also characterizes these groups.

R T

- From the mathematicianfs point of view, the major result is a

"¢haraC£erization'of‘thev¢onjﬁgates of the subgroupsfcfathé*group

f{x— ax + b: a isprSitive} .within'the‘group‘of incréasingbreal




homeomorphisms with product given by composition of functions. This
result has obvious implications for the transformation equation (Aczél,
1966) F[F(x,a),b] = F(x,aob) where x ranges over the reals and a,b
range over a subsemigroup of the affine transformations of the real
line. For a discussion of the connections between the work generalized
in this paper and work on functional equations, continuous iteration,

iteration groups and webs see Levine, 1970, section I.4.

I. SIMPLIFYING PROBLEM ONE

In this section Problem One is reformulated until a simpler,
more standard problem is obtained. 1In the process an attempt is made
to demonstrate that this is an ordinal theory and to show how this
theory may prove useful in measuring mental events.

As a first step both of the topological spaces A and B are
reélaced by the space of real numbers. This will be done by considering
homeomorphisms o: Reals-——».Av and B: B—> Reals. With such a pair
of functions, the set of functions F, may be used to define a set of
real functions BFy = {PFo : F ¢ E}.

There are two types of applications in which one might consider
spaces'éther théh the reals. In the firét,type A vand B are objective
spaces with numbers alreédy assignéd'to points by physical meésurement.
In this case the points:in A and B will be idengified.byihumbers
ranging 6ver;ihtervals and é choice of o, will be easy. jThus in the

“example on distributions of weights, each weight (that is, class of




equally heavy individuals) in A is measured by a positive number x

giving weight in pounds and each probability in B by a number vy
between zero and one. In this case we may choose o(x) = ex and
B(y) = log ¥y - log(l-y). The particular choice of o and B will
be inconsequential in a sense soon to be made precise,

For any choice of (o,B) &and any F in F we hgve v[au(x)+b] =
F(x) for all x in A if and only if Bv[aua(x)+b] = BFo(x) Ffor
all real =x. Consequently a pair of homeomorphisms (u,v) satisfy
the conditions of Problem One posed in terms of F, A and B 1if and
only if (ux,Bv) satisfy the conditions of Problem One with BFo,
Reals, Reals replacing E, A, B. Thus if in Problem One A and B
are objective spaces we may choose any homeomorphisms o,B and solve
Problem One with Broy Reals, Reals replacihg F, n, B for sclution
pairs (u',v'). The solutions to the original problem will be exactly
the pairs (u'a_l,ﬁ_lv‘).

Notice that the same functions u and v are obtained.as
solutions to Problem One for each choice of « and B. It is in
this sense that éhe choice of o are- B is inconsequential. Thus:»

for example,if A is a set of weights we obtain the same functions u

assigning numbers to individuals whether we initially measure weights

R

in pounds or the logarithm of pounds. In this sense the algebraic;'

arithmetic and metric properties of the numbers initially assigned to

)

R L L

objects are irrelevant.




In the second type of application, the space B 1is a subjective
space. Thus in studying audition we might assume that there is some
basic psychophysical function p connecting the physical intensity
of a continuum of sounds A with a continuum of loudnesses B. Further
it might be assumed that there are manipulations A which change the
relationship between physical intensity and loudness so that in con-

dition A the correspondence F., between physical intensity and

A

subjective intensity is x—— ahp(x) + bh where a, and bh are
constants depending only-on \. Statements about recruitment and
thresholds could then be rephrased in terms of hypotheses about ah
and bh' However if one is primarily interested in the function p,
thendone may consider Problem One relative to the hypothetical function
{Fh}' the physical A and the subjective continuum B;
In this type of application experimental finesse and a deep
- understanding of phenomena are required to recast Problem One as a
guestion about real homeomorphisms, One general method is to use
crossvcontext or'cross modality matching to first recastvProblem>0ne
as a qnestionbabout.experimenta;ly defined correspondences between two
objectlve spaces. The'rationale.and procedure.is roughly this: Underd,"
'some standard condrtlons of observatlon there is a homeomorphlsm ﬁ |

mappingfan;obiectlve contlnuum -A I onto the subjectlve contlnuum B.

0

iUnder each experlmental condltlon h there 1s a correspondence FX
P . X : . B
' between the objectlve contlnuum A and the subjectlve contlnuum "B

In order to _bta

- an observerbselectsrpairs¢3k_'1n A and y ln AO such that Fx(x)'1

v_lrlcal mapp’”g between “tWo' Objectlve spaces,f“‘”"




matches H(y). Under appropriate conditions this empirically de-
fines homeomorphism H—lFK sending «x in the objective space A

tc y in the objective space A By varying A\ we obtain a

O.

family {H—th} of homeomorphisms mapping A onto 'AO.
Thus at the cost of introducing a new unknown H we convert the

second type of application into the first. By solving Problem One with

_ {H—th}, A, A, we can still obtain a great deal of guantitative in-

0
formation about the psychophysical function p. For (p,_H—l) will be
a solution for Problem One. Now suppose (u,v) and (u',v') are
also solutions to Problem One. Then under very general conditions u
and u' will be related by a linear transformation. Consequently
if (u,v) is any solution to Problem One, we have p(+) = au(-) + b
for some constants a and b.

From this discussion it should be clear that there is no
generality lost by conSidering only real homeomorphisms. It should
be also clear that the theory mlght prove useful in measuring sub-

jective spaces and that prioxr physlcal measurements of the objectlve

_spaces appearing in appllcatlons have no consequences.

In order to ‘use. standard group theoretlcal methods and results,

"each set of real homeomorphlsms Wlll be ass001ated W1th a def1n1te

,group of homeomorphlsms., The group operatlon here will be composltlon E

,of functlons.o_“he assocrated group of F is deflned as the subgroup
5'\of the group of all real homeomorph1sms generated by the set {F G- F

gand G are 1n F} These groups ‘were 1ntroduced and dlscussed in

»




detail in section IV.l. of the earlier paper. In that paper it

was shown that these groups could be used to reduce a problem de-~

fined by many curves to an equivalent problem definad by just two

or three curves.

To further motivate the use of aésociated groups it is shown
that with these groups it becomes possible to search for the functions
u and v of Problem One successively rather than simultaneously.
This claim is made precise in two propositions below.

Proposition 1: Let the set of real homeomorphisms F, have

associated group G. Then for any u there exists a v such that

(u,v) satisfies Problem One for F, Reals, Reals Af and only if for

each g in G there is some positive a and real b such that

-1
g(e) = u “(au(s) + b).
Proof: Suppose (u,v) satisfies One for homeomorphisms F. Then

for each F and G in F we have positive a,c and real b,d

such that’

- e

F(+) =>‘\_r__[au(-)A + b

P u Byt - bral
ca .

6(+) = vleu() +al; Fle= u Bule) + (a-b)/al.

Consequéntly the v_g‘é_ne‘fa_tors_ of G are of form u—l(au(') + b).
Since. inverses' and pro_duét”é»', (ieee, ,’Corhpbsités) of functions of this

'fqrm are _'als'o__v'o'f. th:l.s form, every g J_ng ' .is'of the form

) ’jg(-v)‘v-:‘: uf}-(aﬁv(‘-)-:“""‘;’" 45,)" _ for some "po‘sitive :v."a, and real’ b.
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Conversely, let u be a homeomorphism such'that any g in G

[ad

in P put v, _=F u—l.
[a¥d

is of form g(*) = u—l(au(-) + b). For any F o o

0]

Then Y is a real homeomorphism and FSlF is in G. Consequently,
F(-) = v (au(+) + b) where 'FglF(-) = uwHau(+) + b). Thus, (u,v,)
satisfies the conditions of Problem One. This completes the proof.
Proposition 1 characterizes thé firsf components of the pairs (u,v).
Most of the remainder of the paper deals with the problem of finding the
functions u. Proposition 2 below trivializes the problem of finding

v after a suitable u has been discovered.

Proposition 2: If F is a set of real homeomorphisms and u is

such that for some ‘v, (u,v) satisfies the conditions gf Problem One then

-1 . e
i. for any" FO in F (u,FOu ) satisfies Problem One.

ii. if (u,v) satisfies One, then (u,w) also satisfies Problem

One if and only if for some positive a and real b, w(x) = v(ax + b)

for all real x.

Proof: The proof of i is contained in the proof of proposition 1. The
"if" half of ii is proven by deriving .v(x) = w(x/a ~ b/a) from
w(x) = v(ax + b) and'éubstituting in F(-) = v(aju(-) + by). The re-

mainder of ii  is obtained by manipulating the equations

F(*).

v[a‘lg(ﬂ‘v—_l-' bl] ; ,F,(,'-)“=__.w'[a‘1;1(°)’ + b]

.

.-to conclude 'W(x)ﬁ VEglxv;’(ébl/ai) + b]; 
S R A o

“fIn'view:df Proppsitioﬁ»l‘and 2, Problem Orie can be'considetéd'solved

. when Prdbleﬁ»TWo?béiow is sdived;;pﬁaﬂ
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Problem Two: Given a group of real homeomorphisms G find all the

real homeomorphisms u such that for each g in ) there ii positive

a and real b such that g(+) = u ~[lau(*) + b].

Actually, Two is no more general than One because every group &)
of real homeomorphisms can be regarded as the associated group of a
set of real homeOmorphism F. This is so because the associated group
of a group of homeomorphisms is the group itself.

Problem One can be further simplified (again, without loss of
generality) by considering only the strictly increasing real homeomorphisms
rather than the increasing and decreasing homeomorphisms. First let mn
denote the homoomorphism X—> =X, Since u—l[au(-) + b] equals
(mﬁ)_l(amu(-) - b), ﬁ satisfies Problem One if and only if mu does.
Consequently we can seek only the imcreasing u; the remaining functions
can be obtained by multiplication by minus one.

In the final simplificationv(Proposition 3) the groups with de-
creasing homeomorphisms are‘eliminaﬁeob It means that either there are
no u or all_functiono used to define the‘associated group are décreasing

‘or all increasing.

Proposition'3:-i£§;§ group,«gy containSjg homeomorphism which faiis

to be stiiot;y imcreasigg thenltﬂere'aré ég funotions. u satisfying
?robieﬁxsgya,:;: ‘ ‘ .
 2£99£:"ﬁVefy;real:homeomorphism.is'oithor'stricoly ipcreasing.or Stfiotly;
"deoieoéing;mmif _u:iiéjsﬁ;icﬁixmaeoiéaSing ﬁhen_éo is-f#— R fFom'eéoh |
© positive a and real b, x> ax + b is strictly increasing. The

- composition of an even number-of decreasing functions is increasing.-

a3 e, e et en ezt e § sl
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Consequently each function u_l[au(°) + b] is strictly increasing
whenever u is a homeomorphism and a is positive. Thus if there
is any u satisfying Two for G, then each g in G is strictly in-
creasing. This proves the contrapositive,

For brevity, a strictly increasing homeomorphism of the reals onto
the reals will be called a scale. Thus Problem One when stripped to
essentials becomes

Problem Three: Given a group of scales, find all the scales u such

that for each g in the group there is some positive a and real b

such that g(;) = u—l[au(-) + b].

II. GLOSSARY

This section contains a list of definitions, notations and results
from the earlier paper and from.elementary group theory. With few ex-
cepfions.most'introdnctory genera1 algebra texts contain more gronp
theory fnan is needed here.

A scale is-defined:fo be a strictly increasing homeOmorphism of the
reais onto’ﬁhe-reais. It 1s easy to verlfy that the set of all scales
1s a group when the product fg. of £ and g is deflned by £fg(x) =

'} 'f[g(x)] The 1dent1ty in: thls group is. the 1dent1ty on the reals and

:_1w1ll be denoted by e.‘;l*"'

' 'I‘he relatlon =, def:.ned by f Sg l:l.f f(x) Sg(:«:) for 'aliareavl

P 1Hx. 1s a partlal order relatlon 1n the set of all scales because the

"7Q11usual order relatlon 1s a partlal relatlon in the set of all numbers.
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Furthermore, since scales are one-to-one and onto functions, f =g
implies hf =hg and fh = gh.

By direct calculation the set of all scales of form f£f(x) = ax + b
is easily shown to be a subgroup of the group of all scales and will

henceforth be called the affine group. Note that the affine group as

used here has only increasing functions in it. Two subgroups of the
affine group which are referred to frequently enough to require names

are the group of translations {x—=>x + b: b is real}l and the linear

group {x— ax: a is positive}. A scale or group of scales will be
called affine if it is an element or subgroup of the affine group.

- Two subgroups G and B of the group of all scales are said to
be conjugate if there is a ;cale u such that ugp—l = H. 1In other
words, G and H are conjugate if for some scale u, the isomorphism
g—> ugu—l maps g‘ onto E,. Thus there are scales u satisfying

Problem Three for a group G if and only if G is conjugate to a sub-

group of the affine group.

An affine system is a group of scales conjugate to a subgroup of

.ﬁ‘the affine,éroup. A“uniform system is an affine system conjugate to a
subgroup‘of the groupvof trénslations.v From the preceeding section it
‘can be seen thétva ;héory of affiné:(uniforﬁ) systems can be regafded
:as-a'#héoﬁfbabéut triplesf‘g, A; B bwhérei A and B ‘aré toéological
'spaéeé and” E! is‘é ée£'quﬁoﬁé@ﬁbrphisﬁsfof..A dnto B such éhatv
‘7€£here é#ist_HoﬁeqﬁorphiSm;>'u: Reais¥—fé A  éﬁd.,v; é-—;évReals sﬁqh;that
”1fS¥ eadh;CF‘?inffgfifﬁFﬁ?§ié:in £h§;affineJ§_cu?1(respégﬁi§é1Yfggfbqu

f Qof t£anslatiqns); ;: _;_f




A detailed theory of uniform systems is available (Levine, 1970).

It contains necessary and sufficient conditions for a group of scales
to be a uniform system and a discussion of the set of all scales u
such that ugu-l is a group of translations. In this. paper, Problem
Three is solved by reducing it to answexred questions about uniform
systems.
If g is a group of scales and uGu—l is a subgroup of the

translations then any two scales F, G of 9, are rendered parallel
by u in the sense used in the introduction: the transformation of

the plane < x,y >——> < u(x),y > carries the graphs of F and G

into parallel curves. Consequently we will say u renders G parallel.

. -1 : . .
Analogously, if uGu is a subgroup of the affine group u will be
said to render G similar. Since in both cases u can be thought of
as a solution to a large number of simultaneous functional equations,

u will be called avsolution or a solution for E,

A group is abelian if xy equals yx' for any.twoﬁelements in the
group. 'Equivalently, a group is abelian if each produet xyx'-]'y—1 is
equalnto-thevidentity_in the group.-

o Ih.ahy'groupl ;ajoa'commutator is simply any element which can be
:written in the form'jxyﬁ_lyfl‘bfor some group elements X and vy.

-1 .
Henceforth the commutator xyx y W1ll be abbrev1ated as [x,y]

Slnce [x,x] is the 1dent1ty and [y,x] is the inverse of [x,y] the

set of products [xl,yl][x ,yz] [x Y ] is’ a subgroup. It is denoted

by C' and called the erlzed gxgug,gf G. An 1nformal d1scusslon of
some useful aspects of der1ved groups 1s 1n sectlon III.
There are only two facts about derlved groups whlch w111 be used

1n the mathematlcal sectlons below. They are

1-7
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1. @' is invariant, i.e., if £ is in G and g is in G', then
~v ~ ~v
-1 . .
£ "gf is in g'.
2. If g is a subgroup of the affine group, G' is a subgroup of
the group translations.

Fact 1 follows from the equations

1

1 (£ gf) (£ he)

£ ~ghf

n

n

£ g,n]e = [£ g,  he] .

To verify fact 2 one notes that if £(xX) = ax + b and g(x) = cx + 4 then
for suitable Xk, fg(x) = acx + k. From this it follows that each commutator
is a translation.

A set of elements {gi} in a group are.called generators if every
element in the group can be written as a product of the 9; and their
inverses., A‘group is finitely generated if it has a finite set of
generators. Fof example the associated group of a finite'set of scales
is finitely generated. A group is cyclic or monogenic if it is generated
by one of its elements; i.e., if there is some g in G such that
>

G = {gn: n is an integer}. For examples there are the group of real

integers and its subgroups.

A nonmoanenic group is a group which is not monogenic. For example, -
' considei'thé‘additiVe;reals.' If this group G were monogenic there would
' be some real x -such that G = {n%: n is an integer} and G would
- have a smallest bositive'elementj |2| + This line of reasoning leads
:tozthé»foildwin'.aSSeitionwwhicﬁ is needed in the sequel: A-sﬁb'rou 6f

"“the additive reals which-has-a sedquence cf non-zero. elements converging.

.. to zero is nonmonogenic.




.. Since (Fﬁp.-)ﬂ:{equals qgfu»
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This distinction hetween monogenic and nonmonogenic groups is
important because the following very strong uniqueness theorem for

nonmonogenic groups has been proven (Levine, 1970, section V.4).

Uniqueness Theorem: If e is a nonmonogenic group of scales and qu

EE.E subgroup of the translations, then ng—l is a subgroup of the

translations if and only if for some positive a and real b, v(.) =

a'L'I.(‘) +b.
Finally a well known result attributed to Hion will also be needed
in the sequel.

Hion's Theorem (Fuchs, 1963, page 46): If x— x' 1is a strictly in-

creasing isomorphism of two subgroups of the additive group of reals,

then for some positive a and each x, x' equals ax.

ITI. SOLUTION FOR NONABELIAN GROUPS

The abelian and nonabelian groups are treated separately. Curiously,
the theory for nonabelian groups is much simpler than the theory fox
abelian groups. An informal discﬁssion‘of the significance of these

results is in the next section.

Theorem 1: A nonabelian group of scales is an affine gystem if

:‘and onlyAiﬁ,its'défived‘éroﬁp 3§ §'nonm6nogeni¢ uniform system.

'32£§9£g :Le; LE  bé_a noﬁabe1ian'groﬁ§ pf éda1es;NvTo prove the condition
ié necgésary;'sﬁpéosé for.some SCale'“u, q§y— is absubgroup of,fhe
'i&ffihefgroﬁpf Tﬁéh;l(égp%l);' is_a.subgroué 6f fhergroup.of.tf%nslations}

:.f'npnabeiiah; we”may choose - £  and--g ‘in'_§; such that fg # gf. Without
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loss of generality, we may take f£f(.) = u—l(au(-) + b) for some a # 1,
for otherwise G would be a uniform system and isomorphic to some sub-
group of the additive reals. Since fgf—lg—l is in @' and f£g ¥ gf,

-1 -1 -
fgf g () = u l[:u(-) + c] for some ¢ other than zero. Since G'

is invariant, for each integer n, hn =.fn(fgf'-lg'-l)f—n is in G'. But
since hn(-) equals u—l(u(-) + anc) and a is neither zero nor one,
the isomorphism u—l(ﬁ(-) + k)=——>k of G' into the additive reals
places G' in correspondence with a subgroup of the additive reals which
cannof be monogenic. Thus G' is a nonmonogenic uniform system.
Conversely, suppose G' is a nonmonogenic uniform system. Let u
be a scale such that ug;u_l is a subgroup of the group of translations.
Then for any g in G’y g(+) equails u—l(u(-) % k) for some k. Let

£ be an arbitrary element of G- Since G' is normal, for each g in

Yooy = utuey +ak

Q}, fgf_l is also in Ef' Thus for some d, fgf_
i.ee, g(*) = (uf)—l[ﬁf(-) + d). Consequently, uf is also a solution
for G'. By the uniqueness theoremn, _uf(-) = au(+) + b for some positive a;
i.€¢y lf(-) = u_l(aﬁ(f).+ b). Thus qu—l is contained in the affine
géoup;v'This,compleﬁés»thé'ptbdf. o

As_a corolla?y, wé'pbtain a éémpléte;solution forvProblem Three
. when- ék is hoha?élién.b Ité,probfvis conﬁ&iﬁed;in‘thevpfoof on Theorgm»

One..

;Cotoliétx}:f;f‘;foi§ §fn6nabélian‘affiné»syStem, then u satisfies

ﬁhe'cdhdifiGhs:gf'Pféblem'Threé if and only if - u  renders Ef’fgarallel; 
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In fact a somewhat sharper result has been proven. It is Theorem
One without the word "monogenic". The only proof now available is
long and technical. It will be presented elsewhere. The idea of the
proof is to show that if G' is a uniform system, then the subset F
of scales with fixed points is an invariant subgroup of Q; and G/F

is abelian. From this it follows that G' € F and G is abelian.

IV. DISCUSSION OF RESULTS

This section contains some informal comments on the results of
the previous section. ©No proofs will be given. ©No assertions made
here will be used in the sequel. A knowledge of some results in the
earlier paper and the definitions of rings and polynomials is assumed.

Some readers will find the results of the last section pleasing and
other readers disappointing. The problem of finding solutions for the
nonabeliantaffine systems has been reduced to finding solutions for a
particular abelianvsystem. By using the recults in the earlier paper
~ one can calculate solutions,‘specify'necessary geometric oroperties on
'empiricalvcurvesdand‘design experinents to testvhypotheses whlch imply
~that a.set of curves‘ls.an'affine system.'

However the reader concerned Wlth numerlcal computatlons and galnlng

o 1nslght by manlpulatlng symbols may be dlsa9901nted by the reductlun to

Ahl,isysfems was Justlfled by two conslderations Wthh no longer seem va’id

3the derlved group.v The 1ntroductlon of groups in the study of unlrorm
. A Ly

s ;Flrstly, the number of scales that needed to be consldered to obtaln -

i-"solutlons was drastlcly reduced A procedure was spe01f1ed foz f1nd1ng




a

a subgroup with two generators within the associated group of a finite

set of scales such that the subgroup had exactly the same solutions as
the original set of scales. Consequently each finite set of curves
could be reduced to an gquivalent set of no more than three curves to
be rendered parallel. Secondly, with associated groups our intuitions
about a highly familiar object could be used to understand uniform
systems. The associated group of a uniform system is isomorphic to a
subgroup of the additive reals. Thﬁs, the scales in a uniform system
can be thought of as numbers and the composition of scales as addition.

The reader may now be disappointed since the derived group of an
affine system may be infinitely generated even when the associated
group is finitely generated. Furthermore, all of the derived group's
finitely generated‘subgroups may be monogenic. Consequently, it will
often be impossiblé to £find a small subgroup of the derived group
equivaiént (in thé sense of having the same solutions) to the larger
group. Furthermére, derivéd groups éanvbe very complicated objects with
a complicated, unfamiliar calculus.

| Thése 6bjections are answered in the remainder of this section

by showing that there i a ring structure iﬁherent in affine Syétems.
Using‘the derived group and the results”of thé.last éection Wwe may apply
our intuitions concerning a»very.simpie and familiar objedt; namely the
polyhomialé in one vafiéblé wiﬁhfi@teger céefficients. Furthermore, as

rings, affine systems will always havé equivalent finitely generated sub-

systems. A simpieLalgorithm ¢annbe given for locating a pair of scales




such that each of the scales needed to compute a solution can be

defined by finitely many operations (of a simple, familiar nature)
applied to these two scales.
Consider for a moment g[t] ¢+ the polynomials in t with integer

coefficients; i.e., the set expressions of form

2 : r -
p(t) = n0 + nlt + n2t + ees + nrt where r 2 0 each of the ni are

integers, with the usual laws of multiplication and addition. One way
to think about z[t] is as an abelian group with an additive operation
¢ mapping Elt] into itself such that op(t) is simply the polynomial
p(t) times the polynomial t. Then each polynomial can be written

in the form nO + nlcp(l) + nch(cp(l)) + eee + nrcp(...cp(l)) and the
definition of multiplication can bé reduced to statements about the
iterates of the operation .

If theiring structure is ignored and th]  is regarded as an
additive group then z{t] is not fini;ely generated. For any finite
subset glt] there will always be a polynomial (namely, t* fqr some
large r) which cannot be obtained by finitely many of the operations of
addition and subtraction applied to the generators. On the othér hand as
a ring itfis generatéd by 1 _énd »t;_ And as a group with one operatc:
@, it is;generaﬁed by the-element 1.

o see the relevance df:rings to affine systems consider an affine
.system with associatéd group '§‘ generated by a ééir 6f scales, say g(x)
:u.}[tu(g),+‘b] ‘for ’(t‘# i)  and f£(x) = u-l(u(x)'+ l) . For simplicity

 4suppose £ is in thevderived group G'. The general element of g

Can‘belwritfen.in the form

. Y S s
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n m n n m
1.1 2 r_ r
(l) h=g f g LI Y g f

where ny or m_ may be zero. Recall that h is in the derived group
iff it can be written as a product of commutators [x,yj = xyx—ly—l
where x and y are each products of powers of £ and g. If we
add the exponents of g in a commutator clearly we must get zero. Con-

sequently, each element in the derived group of G is of the form (1)

with n, +n_ + ... n = 0. Consequently we can write an element in

1 2
h e G' as
- (gnlfmlg'nl) (gn1+n2fm2g'(n1+n2)) (gofmrg-o)
) (gnlfg—nl)mlkgnlfnzfg-(nl+n2)flz N (f)mr .
By direct calculation
g:Eg-.l = u—l[u(') + t]
‘gnfg—n = »';;(';;n—l'fg—(n",l))g‘—l = a u(e) + €]

(gnfg—n)m = u-l[u(?)‘+ mtn]

n n, . n
m.t 1 + m. t 2 +-...'mit o

and consequently h equals u_l[u(-) + p(t) ] where p(t) is
1 2
The analogy with polynomials is almost perfect. When G is an
affine system,.thén gf;is_a (generally not finitely generated) abelian
group. .H0weV¢t; if we may also’tegard G' as a ring by thinking of it

'qs an additive”group (the,group operation is composition ofvfunctions)
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with a multiplication defined by a pair of operations @(h) = ghg-l
and its inverse ¢-l(h) = g—lhg. (The inverse operation must be in-
cluded because some of the n, may be negative).

Now we return to the general situation and show that affine
systems are even "more finite" than uniform systems. Let G be a non-
abelian affine system. By selecting a pair of elements which don't

commute, say £, and £ we obtain an element in the derived group

1 2!

f = flfzf;lf;l = uulEu(-) + k] for some solution u and some k # O.

Since G, cannot be an (abelian) uniform system there must be some g

say g = u_lftu(-) + b] not in g}. Since g = u_l[t_lu(-) - b/t]
is also not in G' we may choose g such that t is between one and
zero,

Such a g can always be selected prior to finding a solution u.
It is easy to show by using the fact that u 1is a scale that these
functions have the following‘characteristic property: For very large
X, X exceeds g(x) and for very'small X, g(x) exceeds X.

We consider the associaﬁed group Y of the subset of g},{gnfg—n: n = 0]}.
H will be closed under the operation ¢(h) = ghg_l. As a group H |
will have generatqrs {¢n(f)}.b Since: H is an abélian group (in fgct a
ﬁniform system),’we maysindicate the‘compositiéﬁ of fupctions in H by
additibn.so that the typical giement of H will be |
h ='n0f + nl¢(f)‘+ voe nrwr(f) wﬁére3‘nh denotes. h + h ;.. + h
n times and ¢f(f§ déﬁdtés‘ ¢(.;. @(f)) r times. As,withvpolynomials;”

‘fuathe‘opération ¢ . can be-used to'definé a ring‘structuré on H. .Since

: cp(hl +,h2) =\¢(h1)vf,9(h2).'and:sinqe,.
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h, = u—l[u(-) + k1] and .h2 = u-l[u(-) + kz]

. -1 -1
imply hy + h, =u [u(s) + k; +k,] and @(h)) = u [u(s) + tk,]
there will be a ring homomorphism from g[t] onto H. Consequently K
can be regarded as a monogenic ring. Every element in H can be ex-
pressed as a finite combination of a fairly simple kind of the two scales
. n -1

f and g. Furthermore, since the sequence ¢ (f) = u " (u(.) + tnk)
converges to the identity scale, the scales rendering H parallel are
exactly the scales rendering G similar.

Notice that such an £ and g csn be found in nonabelian G whether
S is finitely generated or not. Thus there is a sense in which (non-

abelian) affine systems are simpler objects than uniform systems. They

can always be regarded as having finitely generated equivalent subsystems.

V. SOLUTION FOR ABELIAN GROUPS

Here we considei the affine sYstems which are abelian but not
uniform. A simple necessary‘condition.will be given which will make
their presencé'obvious in even;rougﬁ dats. Then necessary and sufficient
conditions wiil‘se'givsn¢‘ Finally the proﬁlem of finding the trans-
formations thch'rendér_them similar will be solved by dissecting them
into two uniform systems. :Aillthejsolutipns and onlyusolutions are

obtained by "pasting tsgether"_soluﬁions'tp the uniform systems.

,Necessary_COndition{'*Ef Q}’EE;EE abelian affine system, but not

0

a uniform'sysﬁem; thenfthere is ekadtly one number x. such that if £
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and g are two different scales of G then f£(x) equals g(x) if

and only if x equal x . This point N is a fixed point (i.e.,

0]

satisfies the equation f(x) = x) of all the functions £ of G

In other words, there is exactly one point common to all graphs
of the functions of G.
Proof: First let G be a subgroup of the affine group of scales
{x — ax + b}. Then by a direct calculation it is seen that two
functions of G commute iff they have the same fixed points. Since
the graphs of\affine functions are straight lines, for any two different
affine functions f and g the equation f£(x) = g(x) has at most one
solution. Note that G is a uniform system iff it is a subgroup of
the translations, i.e., e and the affine functions without fixed points.
C§nsequently, if the subgroup of the affine group G is an abelian affine
system but not a uniform system, then the condition is valid. Since for

any scale u, £, and g we have
C ~1_ -1 -1 . ~1
£(X) = g(x) iff u fu[u (x)] =1 gu[u (x)] '

the condition is generally valid.
- Ohly those groups satisfyihg thelnecessa;y cqndition are considexr !
in the séquel. Soﬁe additiénél notation is needed to express the remaining
résultS'clearly. |
iet ‘gf be.any group saﬁisf?ing the necéssary C6ndition with fixed
0°

For any scale g of g let g+=‘(x0,°5}-—9_(x0,°°)_ and
g_:(—m,xo)f—» (5m,go)f,be the hOmeomorphisms'obtained'by restricting g

point x
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to the indicated intervals. Let 4 and m denote the real-valued

homeomorphisms of (xo,w) and (—w,xo), respectively, given by

£(x)

natural logarithm of (x - xo)

m(x) E(Zxo - %) .

Two homomorphisms are now defined which make two groups of scales

of the group g,

For each g in § let g+ and g- be defined by

‘ -1 - -1
g = fg kb ig =mgm .

Since: (gh)+ = g+h+ and (gh)_ = gh_ we have (g'h)+ = g+h+ and

(gh)- = g—h— . Since g+ is the composition of increasing homeomorphisms
mapping the reals eventually onto the reals, it is a scale. Since g—
is the composition of an even number of dgcreasing homeomorphisms and
én increasing homgomorphism, it too is a scale. Consequen;ly + and
are homomorphisns into the group of all scales.

Recall tha£ gf_and' ET as sets of scales are partially ordered by
£ ,5__g. iff f£(x) =g(x) for all réal' 'x. When the mappings * ana "
are iéombiphisms, Ef and ET are obvibusly‘isomorphig groups. Sﬁill
v§T :a#dL‘§:’ néedvnotvbé isomorphic'aé ordered_groups. It is easy to
| show that £h¢% #re:isombrphic:és 6rdé£ed'groups whenéver coﬁditioh 3
‘of the nexf fheorém‘is.éatiSﬁiéd; .

"The;maiﬂ”réSﬁlt,éf £bié’sec£iOn can now be formulated. It}COntains

a'completegcharactériZaﬁiqn of the abelian affiné‘systems.

o8

Aruitoxt provia c .
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Theorem 2: Let G ke a group of scales satisfying the necessary con-

dition. Then G is an abelian affine system but not a uniform system

if and only if

1. QT is a uniform system
2. gﬁ is a uniform system

+ - -
3. forall £, g in G, £ =g iff £ =g .

Proof of Necessity: When G is conjugate to a subgroup of the linear

group each g in fe] is of the form g(*) = u—l[au(-)] for some fixed
scale .u. With these equations, verification of the three conditions is

a simple calculatici. To show each abelian affine system which is not

a u.s. is conjugate to a subgroup of the linear group, let g be a
solution. Since the mapping x-—— u(#) - u(xo) is also a solution

we may choose u such that u(xo) is-zero. Then the equation ugu—l(x)=
ax + b implies b is zero and G, ié éonjugate to a subgroup of the

linear groug.

Proof of Sufficiency: TLet QT and ET have solutions v and w
viespectively. Then the equations g+ = v-l[v(-) +c|] and g = w—l[w(-) + k|
define»hémeomérphisﬁs of QT vana g: into the ordefed additive reals

‘given by §+—*—?'c and g — k. By'condition 3, the mappings §+-—-é c

o + ' : '
and g —g must be 1-l. Consequently, ¢ > g+ > g > g > k

defines a strictly monotonic homomorphism of two Subgroups of the reals.
By Hion'é'theoremAthe ratio of ¢ to k remains constant as g # e

ranges over G. -Since for any positive a, av is a solution and since

‘:BE) o
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4- - -~
g =v l[v(-) + c] implies g+ = (av)‘l[av(-) + ap], the ratio can be

considered to be plus or minus one. But condition 3 implies that c
and k have the same sign. Consequently, without loss of generality
we assume ¢ eguals k.

To obtain a solution we define a function u by

ra
£

{ £—lv£(x) X > %

! 0
{
ulx) = < xo y X = xd
i
[ -1
M wm ¢ X <ZxO .

This function is obviously a scale. Using the functional equation for
the iogarithm it is routine to verify that u is a solution and to
complete the proof.

The three conditions can be shown to be independent. However, if
it is known that HQT and G = are uniform systems, then the third con-
dition can be simplified by choosing ahy X, smaller then X, and x,
larger than X, Then condition 3 can be replaced by 3': |

3. £k Sglx) Liff glxy) S£x)).
The final:result ?educes uniquenéSs and cpmputation questidns to

questions about uniform systems. We use the notation already introduced.

Since the proof employs no hewjarguments, it is omitted,

Corollary: (Uniqﬁeness.and Computation for Abelian Groups) Let ‘g, be

an abelian affine system but not a uniform system. Let g # e 'Eg one

———

fixed éleménf'ig,' Then_g scale u

is a solution for G if and only if
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-1 ., . +
v = £u+£ is a solution for g
-1 . . ~
W = mu_m is a solution for G

va'v 1) equals wg w l(0) .

Thus to find a solution for G as an affine system, one chooses g # e

. . + -~ .
in G and solves uniform systems G and G for v and w. To satisfy

condition 3, w is multiplied by the positive constant vg+v—l(0)/wg—w—l(0) .

A solution is given then by the formula in the preceeding proof.
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